Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Ping Huang,^a* Qiong Wu^a and Guang-Quan Mei^b

^aLaboratory for Self-Assembly Chemistry, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China

Correspondence e-mail: huanghaiping@ruc.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å Disorder in solvent or counterion R factor = 0.063 wR factor = 0.169 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(μ -3,5-dimethylpyrazolato- $\kappa^2 N:N'$)bis-[(4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N,N'$)palladium(II)] bis(hexafluorophosphate) acetonitrile disolvate

In the title complex, $[Pd_2(C_5H_7N_2)_2(C_{12}H_{12}N_2)_2](PF_6)_2$ -2CH₃CN, two Pd(dmbpy) units (dmbpy is 4,4'-dimethyl-2,2'bipyridine) are bridged by two pyrazolate ligands in an exodentate fashion. The six-membered ring consisting of the two Pd atoms and the four pyrazole N atoms has a boatshaped conformation. One acetonitrile solvent molecule is located in the clip-like cavity between the two Pd(dmbpy) entities.

Comment

In a previous article, we reported two pyrazolate-bridged dinuclear Pd^{II} diimine complexes that bind inorganic anions (Huang et al., 2005). In the present paper, we report a dinuclear palladium(II) complex, (I), based on 4,4'-dimethyl-2,2'-bipyridine (dmbpy) and 3,5-dimethylpyrazolate ligands (Fig. 1). The Pd^{II} center has a *cis*-square-planar geometry defined by an N,N'-bidentate 3,5-dimethylpyrazolate anionic ligand and a chelating 4,4'-dimethyl-2,2'-bipyridine ligand. The dihedral angle between the two coordination planes around the Pd atoms is 69.6 (2)°. The Pd1(dmbpy) and Pd2(dmbpy) planes form a cleft with a cavity of approximate volume 210 Å³; the planes are inclined at 62.4 (1)°. An interesting feature of the structure is the presence of an acetonitrile solvent molecule in the clip-like cavity formed by the Pd1(dmbpy) and Pd2(dmbpy) planes, at a distance of 3.209 (5) Å (N9 $\cdot \cdot \cdot$ C6). The other acetonitrile solvent molecule is 50% disordered over two sites.

Experimental

A mixture of (4,4'-dimethyl-2,2'-bipyridine)dinitratopalladium(II)(41.5 mg, 0.10 mmol) and 3,5-dimethylpyrazole (9.6 mg, 0.10 mmol) was dissolved in water (5 ml). To the mixture was added a tenfold excess of potassium hexafluorophosphate, which resulted in the immediate deposition of the product as yellow microcrystals. The

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

Received 11 November 2006 Accepted 16 November 2006

metal-organic papers

crystals were filtered off, washed with a minimum amount of cold water and dried under vacuum (quantative yield 103.5 mg). Crystals were obtained by the vapor diffusion of diethyl ether into a 1.0 mMsolution of (I) in acetonitrile. ¹H NMR (400 MHz, [D₃] in acetonitrile): δ 2.44 (12H, s, dmbpy-CH₃), 2.46 (12H, s, dmPz-CH₃), 7.65 (4H, d, J = 5.8 Hz, dmbpy-H_{5.5'}, 8.08 (4H, d, J = 5.8 Hz, dmbpy-H_{6.6'}, 8.47 $(4H, s, dmbpy-H_{3,3'}).$

Crystal data

 $[Pd_2(C_5H_7N_2)_2(C_{12}H_{12}N_2)_2]$ - $(PF_6)_2 \cdot 2C_2H_3N$ $M_r = 1143.57$ Orthorhombic, Pbca a = 15.7488 (7) Å b = 25.5058(9) Å c = 25.5058 (9) Å V = 10245.3 (7) Å²

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.78, T_{\max} = 0.83$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0)]$
$R[F^2 > 2\sigma(F^2)] = 0.063$	+ 27.5536P]
$wR(F^2) = 0.169$	where $P = (F_0^2 +$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
11087 reflections	$\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$
724 parameters	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^-$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Pd1-Pd2	3.1492 (6)	Pd2-N4	2.035 (5)
Pd1-N1	2.022 (4)	Pd2-N7	2.022 (5)
Pd1-N2	2.019 (4)	Pd2-N8	1.996 (4)
Pd1-N5	2.002 (4)	N5-N7	1.373 (6)
Pd1-N6	2.008 (4)	N6-N8	1.382 (6)
Pd2-N3	1.999 (4)		
N1-Pd1-N2	80.7 (2)	N7-N5-Pd1	116.0 (3)
N3-Pd2-N4	80.9 (2)	N8-N6-Pd1	116.9 (3)
N5-Pd1-N6	85.1 (2)	N5-N7-Pd2	116.3 (3)
N7-Pd2-N8	85.1 (2)	N6-N8-Pd2	115.5 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C8-H8\cdot\cdot\cdot F8\\ C27-H27\cdot\cdot\cdot F7^{i} \end{array}$	0.93	2.46	3.20 (1)	137
	0.93	2.41	3.24 (1)	147

Symmetry code: (i) x + 1, y, z.

72334 measured reflections 11087 independent reflections 9713 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.044$ $\theta_{\rm max} = 27.0^{\circ}$

 $(771P)^2$ $2F_{c}^{2})/3$.3

Figure 1

The asymmetric unit of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. For the PF⁶⁻ anions only one disorder component is shown. For the disordered acetonitrile molecule both disorder components are shown. H atoms have been omitted.

The aromatic H atoms were constrained to an ideal geometry, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The methyl H atoms were constrained to an ideal geometry, with C-H = 0.96 Å and $U_{iso}(H) =$ $1.5U_{eq}(C)$. Both PF_6^- anions have disordered F atoms and were refined over two sites with occupancies of 0.642 (8)/0.358 (8). The P-F distances were restrained to 1.58 (1) Å and $F \cdots F$ distances to 2.23 (1) Å.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported by Renmin University of China and the Jiangxi Educational Foundation (No. 06287).

References

Bruker (2001). SMART (Version 5.628), SAINT-Plus (Version 6.45) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA. Huang, H.-P., Li, S.-H. & Yu, S.-Y. (2005). Inorg. Chem. Commun. 8, 656-660.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.